

 Navigation

 	
 index

 	
 next |

 	django-spese 0.1 documentation »

documentation of django-spese

This is django-spese’s documentation.

django-spese is a simple personal expenses register. It is an
application for Django [http://www.djangoproject.com].

The source code of this project is hosted on github.com [https://github.com/l-dfa/django-spese] .

Contents:

	Installation
	Creating a Django project to host the application

	Configuring the project

	Creating the database

	Refining the database contents

	Enjoi

	User Guide
	General concepts

	Administration

	Using it

	Veicoli
	Installation

	General concepts

	Administration

	Using it

	Changelog
	Version 0.4

	Version 0.3

	Version 0.2

	Version 0.1

	License

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-spese 0.1 documentation »

Installation

To install django-spese, you’ll need some prerequisite:

	first of all you must know how type commands in console mode in
your system;

	then, it’s important you have some knowledge about how create/configure
a Django project and app(s);

	and, last but not least, you’ll need to have a copy of
Python [https://www.python.org/] version 3.5, or newer, already installed
in your system.

Futhermore I take for granted you know how to use virtualenv
and you’ll use it to create a Django project to test this app.

Hereafter I describe how install from a distribution. You can download it from this tar.gz [https://github.com/l-dfa/django-spese/releases/download/v0.1/django-spese-0.1.tar.gz] ,
or from this zip archive [https://github.com/l-dfa/django-spese/releases/download/v0.1/django-spese-0.1.zip]
if you prefer a zipped version.

Note

If you are a developer, maybe you’d like to clone from the
project source repository [https://github.com/l-dfa/django-spese]
using git [https://git-scm.com/] as version control software.

Creating a Django project to host the application

If you have your project to host django-spese, use it, and go to Configuring the project.

Otherwise create a base project using virtualenv as follows:

> mkdir progetto_servizi
> cd progetto_servizi
> virtualenv env (this loads a copy of the system's python)
> source env/bin/activate (or, in Windows, env\Scripts\activate)
> pip install path/to/django-spese-0.1.tar.gz (this loads django-spese and its
 dependencies: django, django-taggit, ...)

then and create the django project:

> django-admin startproject servizi

Configuring the project

Add django-spese and taggit to your INSTALLED_APPS in setting.py. Like this:

INSTALLED_APPS = [
 ...
 'spese',
 'taggit',
]

And, again in settings.py double check the presence of:

	django.contrib.sessions.middleware.SessionMiddleware and

	django.contrib.messages.middleware.MessageMiddleware

in MIDDLEWARE_CLASSES = [...]

Include the django-spese URLconf in your project urls.py. Like this:

from django.conf.urls import include
...
url(r'^spese/', include('spese.urls', namespace='spese')),

Provide the django login machinery in your project: that is
a template/login.html template, in your project url.py add:

from django.contrib.auth import views as auth_views
...
url('^login/$', auth_views.login, {'template_name': 'login.html',}, name='login'),
url(r'^logout/$', auth_views.logout, {'next_page': '/login'}, name='logout'),

and in setting.py add:

LOGIN_REDIRECT_URL = '/' # It means home view

You can copy a login.html example from
.../env/Lib/site-packages/spese/templates/example/* (in windows use backslashes)

Provide a template/base.html template in your project.
In base.html the block content marks where django-spese is
going to write its contents:

{% block content %}
{% endblock %}

You can copy a base.html examples from
.../env/Lib/site-packages/spese/templates/example/* (in windows use backslashes)

Creating the database

Run python manage.py migrate to create the django-spese models and
adding a minimal dataset: user1, user2, transfer_funds tag,
and cache source for user1 and user2.

Run python manage.py createsuperuser to create a superuser.

Start the development server (python manage.py runserver)

Refining the database contents

Visit http://127.0.0.1:8000/admin/ .

Login as superuser to add/change/delete DB base items: sources, tags, users
(... and expenses. But furnish a user interface to accomplish this
task is one target of spese app).

Note

you’ll need the Admin app enabled

Note

As superuser, at least, reset the users user1 and user2 passwords
at known values.

It might be a good idea to change the user names to something more
meaningful too.

Enjoi

Visit http://127.0.0.1:8000/spese/ , login as a user and enjoi the app.

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-spese 0.1 documentation »

User Guide

Here we are going to talk about how use django-spese
to register our personal expenses.

To understand better the available operations, we need
know the base concepts underlining this application.
So first of all we’ll talk of General concepts.

Then we’ll see the Administration operations.

And finally we’ll see the details about Using it , where
it means the application, of course.

Let’s start.

General concepts

Well, we said personal and expense. Two terms to think about.

Thinking to personal we get
the first concept: every expense own someone.

Who is this one? The logged user.

Hence, to use django-spese we need login using a username
and a password. When we do it, the application will bind every
new expense to us.

Follow the second concept: I, logged user, can add and
work on my expenses; but I cannot do something on somebody’s else
expenses. Even I cannot see them.

Clarified the personal term implications, let’s see the
expense term.

An expense means money to buy something. Where is money from?

Here we are at the third concept: in django-spese a source
of money is called (bank) account.

An account could be a wallet, or a debit card, or a bank account
or something else. Every expense is bound to an account from where
money is kept to fulfil it.

Be aware do not confuse this account concept with idea of
user. In django-spese when we speak about account we mean
bank account, not user account.

As opposed from everyday world, here an account hasn’t limit:
we can draw from it how much money as we wish. Or add to it.

Add? Yes, add. Why we could not add money instead of remove it?
Forth concept: write positive numbers to add money to an account,
and negative numbers to subtract money from it. django-money
don’t know how to subtract money, it knows only how to add it :)

Fifth concept: an account is bound to one, or more, user(s).

This means that every user could have one or more account(s). But
is also possible an account could be shared between two or more users.
(Yes, I know. This is a very strange concept. Only the few married men can
understand it :-)

Sixth concept: every expense could be classified using one or more tag(s).

For example, maybe I wish classify my holidays expenses using the tag
freetime, and the work expenses assigning them the work tag.

A last concept and we’re done. Seventh concept: it is possible
tranfer money from one account to another. We call this kind of operation:
tranfer funds.

Using transfer funds we can save time. We could
subtract (remember: use a negative number) from an account and add the
same (positive) number to another account. But it’s a waste
of time and it’s even a bit error prone: it isn’t so difficult write
one of the two numbers with one more, or less, digit.

And, without transfer funds, if we need to change an amount, we must
remember to change it in two (unrelated) expenses. transfer funds
links the two exepenses, and if we change one, django-spese will change
accordly the other.

Since a picture is worth a thousand words, to summarize, please look at
the figure below, which sum up the relationships between the exposed concepts.

[image: _images/ER.svg]As we can see, the most complex relations are between account and user, and
between tag and expense. Technically speaking, these are m:n relationships.
Every account could belong to more users and vice versa. Similarly for tag
and expense.

The relationships user / expense and source /expense are much simpler: one user
own more expenses, not viceversa. So between source and expense.

Oh, I haven’t quoted the work cost type. Have I? Please, be patient. Over the
seventh I tend to confuse between ordinals. So ... I explain it now. In case
you are a professional, may be you wish to register work’s expenses.
If so, you can classify this kind of costs assigning an appropriate type.
WCType means Work Cost Type and register these types. And PercentDeduction
register what percent can be deduct from income tax calculation about a type.

In case you are asking yourself why use records to register a percent deduction associated
to a work cost type, the answer is: time. The percentage can vary on time passing, and
we can register different values on different time intervals. Yes, incoming tax calculation
isn’t a simple matter in Italy.

Oh! I was forgetting. In case of transfer funds, you cannot assign work cost type to the
operation. Work cost type is worth about money flow to/from the extern boundary of our
accounts. Not about internal movements between accounts.

Ok. Now our global knowledge about django-spese is complete.
We can start play around.

Administration

django-spese administrators are in charge to supply a simple but complete
environment to application users.

To accomplish this target you use the URI http://127.0.0.1:8000/admin/ and login
using the administrator’s username and password.

Base administration window looks as below, without the ellipses:

[image: _images/admin-01.svg]Red ellipses show the most interesting entities for our duties:

	user,

	account,

	work cost type,

	percent deduction,

	and tag.

Green ellipses show the shortcuts to add and change the target records.

User interface is immediate, so I don’t explain it in detail. Only, I wish
underline two points.

First. It isn’t possible to know an existing user password. We can only
reset it to
a known value. To do so, select user entity, from the next users list
select the desidered user, and then use link underlined with red ellipse
in the picture below.

[image: _images/admin-02.svg]Second. When working on accounts, remember: an account could be shared
between different users. So the pertinent window looks like below:

[image: _images/admin-03.svg]Here red ellipse remember us the possibility to bind a single account
to more users.

It’s important bind the account to the correct user, and be aware
to share accounts that are truly shared between different users.
I.e. let’s to keep again the previous picture. There we have
wallet shared between user1 and user2. This means that this
two users have the same wallet: see it as a shared wallet!

If I wish model a situation where user1 and user2 have different
wallets, I must create them (for sake of example let’s
say wallet1 and wallet2) and assign either of them to a single user
(to complete the example: bind wallet1 to user1 and wallet2 to user2).

A last word about tags. These are the folders used to classify our expense.
So I urge you to create a tag set limited in size, that fit well with
your necessities. It’s a difficult matter change classification criterions
while running :)

Using it

And now, provided of user’s username and password, finally we can login
visiting http://127.0.0.1:8000/spese/.

Home page welcome us, showing the list of our expenses:

[image: _images/use-01.svg]Hereafter we call this window as home, even if the true home
is the project home. But we need to focus on our application,
so we call home this one.

In the previous figure we highlight the presence of two different
menues: the project menu and the the django-spese menu.

Project menu depends on your project. The previous figure shows
the one you obtain from the django-spese repository. It’s
there only as a demo to host our application.

We are concerned about the django-spese menu. At home we have
two voices:

	add adding us a new expense;

	transfer funds to realize a transfer of money from one source to another;

	reports to show a summary about our tracked accounts and tags.

If we click on an expense description, we’ll get its detail:

[image: _images/use-02.svg]and from there we can:

	add to insert a new expense (this is the same menu voice from home);

	change to edit the expense characteristics;

	toggle to change the amount sign of the expense;

	delete to remove the expense.

Adding expenses

At home, selecting the django-spese menu voice add we obtain
a form to input an entirely new expense:

[image: _images/use-03.svg]Here we can select the desidered account, write the date, description
and amount. And we can choose between the showned tags to categorize
our expense.

When we are done, we can save and return to home, using the
save button. Or we can save and add again a new expense, using the
save & continue button.

Using save & continue give us the current form already completed
with the previous fields values. This is confortable in case of
entry of more expenses regarding same account, close dates, same tags ...

To leave the form without creating a new expense, simply use the
browser’s back button, or visit the home URL.

Changing expense

As we said, at home, selecting an expense, we obtain the expense
detail window.

Here we can choose the change menu voice getting
a form to change the expense characteristics:

[image: _images/use-04.png]
In this form we can change whatever we wish. To save changes, we
must push the save button, moving us to detail again. Or we can
choose the save & continue button, that keep us on the current
change form: just in case we wish change more fields values but
one at time.

Toggling expense

From the detail window, we can choose the toggle menu voice.

If we hit this voice, the application change the sign of
the amount of the displayed espense.

This action is immediatly shown. We can observe:

	a (hopefully) confirming message after the spese’s menu area;

	the new amount of the expense, with the same quantity, but opposite sign.

Deleting expense

In the expense detail window there is another, very dangerous,
menu voice: delete.

As we can imagine, this voice remove the showed expense.

Warning

What you don’t know is that, by now, this operation
don’t ask for confirmation.

If we choose to delete the current expense this is
what we immediatly obtain.

Transfer funds

At home, selecting the django-spese menu voice transfer funds
we obtain the shortcut to transfer money from an account to
another:

[image: _images/use-05.png]
As usual: we must compile the form with the appropiate values. Then
choosing the save button we get the desired operation: the amount
is subtracted from tranfer source and added to transfer destination.

Reports

At home, selecting the django-spese menu voice reports
we obtain a summary about the current situation of the observed accounts, tags,
and work cost types:

[image: _images/use-06.png]
Here we wish spend a word about the overall layout of this reports.

First of all: the window has three tables:

	about accounts;

	about tags;

	and about work cost types.

Every row of accounts and tags is divided in six columns.
From left to right:

	the item name;

	the sum of the income from the extern, i.e. not from transfer funds operations;

	the sum of internal income, i.e. from transfer funds operations;

	the sum of internal outcome, i.e. transfer funds operations to other accounts;

	the sum of outcome to the extern, i.e. not transfer funds to other accounts;

	and finally the sum of hte previous quantities: the balance of the row.

In case of work cost types, are missing the columns about transfer funds because here
we observe money flow from/to our system boundaries.

The last row of every table shows the relative column grand total, with the exceptions
of the transfer funds columns that aren’t calculated.

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-spese 0.1 documentation »

Veicoli

From version 0.4+ django-spese has an ancillary app: django-veicoli.

This is a simple extention to expenses database to record data
specific to vehicles expenses, such:

	what vehicle is about;

	what type of expense (refuelling, maintenance, ...);

	at what distance (km or mi) it happened;

	a unit cost (regarding refuelling, eventually needed to calculate
unit consumption).

Installation

When you install django-spese, you’ll get django-veicoli
installed too.

So, if you need it, you have only to configure it.

In setting.py of your project, add django-veicoli to your INSTALLED_APPS. Like this:

INSTALLED_APPS = [
 ...
 'veicoli',
]

Then, include the django-veicoli URLconf in your project urls.py. Like this:

from django.conf.urls import include
...
url(r'^veicoli/', include('veicoli.urls', namespace='veicoli')),

With django-veicoli set in your project, when you are going to create the database
you’ll get even the django-veicoli‘s database.

General concepts

Here we must consider that django-veicoli is a django-spese’s
extension.

So the vehicle’s expense will be registered in django-spese database.

Becouse now we are senior database analyst :-), we start directly
to show the django-veicoli schema:

[image: _images/ER-veicoli.svg]We observe:

	every event links to one and only one expense; in expense there is the description,
the amount and the other characteristics of the expense we are already accostumed to;

	and every event links to a vehicle and to a type (VEvent).

Administration

If we have correctly configured our project to use django-veicoli,
when we login to the URI http://127.0.0.1:8000/admin/
using the administrator’s username and password, the adminstator’s home
will show the django-veicoli tables too:

[image: _images/admin-04.png]
From where to fill:

	VTypes, for example: car, motorcicle, ...;

	VEvents, let’s say: gasoline, maintenance, administrative, ...;

	Vehicles: the mythical 313, and so on.

Using it

Visiting http://127.0.0.1:8000/veicoli/ we get:

[image: _images/v-use-01.svg]that is vehicle’s home page.

It lists all events, regarding the logged user, about
vehicles. Here we can:

	to add a new event using the add voice of vehicle menu;

	and to show details about an event with a click on its description.

Adding event

At vehicle home, selecting the django-veicoli menu voice add we obtain
a form to input a new event:

[image: _images/v-use-02.png]
This form has two sections.

The first section permits us to select the vehicle, the event type,
the distance (labeled as Kilometer; use the distance unit you prefer,
but be homogeneous)
and the unit cost of the following expense amount.

The second section is about the usual characteristics of an expense.

In fact it is the same windows used to register a new expense.

And even the behaviour of the save and save & continue buttons are the same.

As usual, to leave the form without creating a new event, use the
browser’s back button, or visit the home URL.

Displaying event

From home, clicking on an event description, we obtain its
detail window.

[image: _images/v-use-03.png]
Here we have two menu voices:

	new to create a new event; this is similar to the same voice
in the vehicle home menu;

	change to modify the current event.

Changing event

If we choose the previous change menu voice, we get
a form to change the event characteristics:

[image: _images/v-use-04.png]
As in case of new event this form has two sections: the first one
specific for vehicle events, and the second for a whatever
expense.

In this form we can change what we wish.

As in case of changing expenses, to save changes, we
must push the save button, moving us to detail again. Or we can
choose the save & continue button, that keep us on the current
change form.

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-spese 0.1 documentation »

Changelog

Version 0.4

	Documents updated;

	Added Work Cost Types;

	Now tranfer funds are related;

	Added a first version of expense reports (by account,
tags, work cost type);

	Added a first version of django-veicoli app;

	In case of operation regarding more tables, using
explict transaction management.

Version 0.3

	Added expense amount toggle functionality

	Added log facility

Version 0.2

	Added documentation

Version 0.1

	Initial release.

	WEB User interface to list, add, change, delete expenses.

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 previous |

 	django-spese 0.1 documentation »

License

Django-spese is licensed under the MIT License:

Copyright (c) 2016 luciano de falco alfano

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	django-spese 0.1 documentation »

Index

 © Copyright 2016, ldfa.
 Created using Sphinx 1.4.6.

 _static/down.png

_static/comment.png

_static/plus.png

_images/v-use-04.png
Veicoli: edit expense detail

Vehicle:

-

10 K]
Unit_cost:
15 &

Account:

were 9]

Work cost type:

]

Date:
2016-12-04

Description:
changing gasoline refuelling]

Amount:

-105 &
Type of expense:

vacanze | [_Imarco

SAVE SAVE & CONTINUE

_images/v-use-03.png
Veicoli: show event detail

Vehicle: 313
Event type: rifornimento di benzina

km: 11

unit cost: 1500

Payed by: cache
on: Dec. 4, 2016
rifornimento di benzina chg

amount: -10.50

_static/down-pressed.png

_images/use-04.png
SERVIZI HOME SPESE VEICOLI LOGOUT

Spese: edit expense detail

Account:

bank1 V‘

Work cost type:

Date:
2016-12-05

Description:
expense description

Amount:
5 =

Type of expense:
vacanze marco

SAVE ‘ SAVE & CONTINUE

_images/v-use-02.png
———
Veicoli: new event

Vehicle:
3 |V

Event type:

benzina |V

1 &
Unit_cost:

1 &
Account:

bank1 v‘

Work cost type:
auto/telef. E‘
Date:

2016-12-11
Description:

gasoline refuelling

Amount:
-56 &

Type of expense:

vacanze ‘marco

SAVE & CONTINUE

SAVE

_images/use-05.png
® ‘ 127.0.0.1:8000/spese/transfer_funds/ ‘ ¢ Q Cerca

SERVIZI HOME SPESE LOGOUT

Spese: new transfer funds

Date:

2016-09-16 ‘
Description:
transferring funds ‘

Amount:

transfer source:

bancomat v

transfer destination:

cache Z|
SAVE
v

_images/admin-04.png
VTypes

Vehicles

+ Add
+ Add
+ Add

+ Add

Change
Change
Change

Change

_images/use-06.png
SPESE VEICOLI

LOG

Spese: Reports

account
banki

cache

tag

without tags
vacanze
marco

totals

work cost type
auto/telef.

contributi

totals

totals

ext-in

100.00

100.00

ext-in

100.00

100.00

int-in

3950

int-in

3950

in

int-out

-3950

int-out

-3950

out

-20.00

-20.00

ext-out

-45.00

3050

7550

ext-out

4550

4550

balance

1550

900

2450

balance

5450

5450

balance

-20.00

-20.00

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

